Investigating learner variability: The impact of task type on language learners' errors and mistakes

Sylvie Thouësny

ABSTRACT

In a project-based approach to teaching a foreign language at university level, students are often required to participate in several task-based writing activities. In doing so, language learners not only write incorrect forms, but also produce correct instances of the target language, which provide both useful information on their strengths and weaknesses. There is variability in language use and such variances may be due to a large number of factors such as the task type or the conditions under which the task is carried out. However, information drawn from direct observations of learners’ texts only enables inferences to be made about learners’ performance. This paper argues that making a distinction between errors and mistakes, where errors represent gaps in the knowledge and mistakes occasional lapses in performance, provides a better insight into learner variability in terms of learners’ ability to use their knowledge. Following an overview of the instruments used to discriminate between errors and mistakes, this paper investigates, through a case study approach, which was conducted over a three-month period of time, whether errors and/or mistakes are produced in one written task but not in another. A preliminary focus on a variety of task-based writing activities produced by one learner of French language is analysed and presented.

KEYWORDS

CALL, Learner Variability, Error Analysis
INTRODUCTION

Variability in a learner’s endeavour to interact in a foreign language, either orally or in writing, has been widely investigated and debated in terms of deciding whether theories for interlanguage variation should support the generative distinction between competence and performance. For example, in Chomskyian views, competence is seen as a stable underlying structure non-variable as opposed to performance which reflects variation in the language use (Ellis, 1994). While Gregg (1990) supports the idea that theories of second language acquisition should not be concerned with variation, Tarone (1983), on the contrary, argues that variability in learners’ language, either written or spoken, is “one phenomenon which must be accounted for by any theory of second-language acquisition” (p. 142). The language produced by learners in the process of second language learning or acquisition is known as interlanguage (Selinker, 1972). In Ellis’ (1994) words, interlanguage refers “to both the internal system that a learner has constructed at a single point in time (‘an interlanguage’) and to the series of interconnected systems that characterise the learner’s progress over time (‘interlanguage’ or ‘the interlanguage continuum’)” (p. 350). Ellis (2008) puts forward the idea that the study of variability is not simply a theory of performance, demonstrating nothing about competence, but rather it may be a theory of variable competence, where competence itself is prone to variation, or a theory of learner’s capability, where capability refers to learners’ ability to use their knowledge. Researchers are far from unanimous in relation to the usefulness of the competence/performance dichotomy. For example, Rothman (2007) states that the contrast is necessary to explain the acquisition process, whereas Tarone (2007) reiterates the idea that the generative distinction conflicts with the notion of variation in learners’ linguistic knowledge. However, investigating learners’ language by only considering the learner performance tells nothing about their ability to use the language, this being mostly due to variables such as slips of the pen (Beck & Chang, 2007).

Deviance from the norm in a learner’s performance is not systematically due to a lack of knowledge. An incorrect form may be due merely to tiredness at a single point in time, inattention, a specific emotional state, a slip of the pen, a bird singing outside the window, to name but a few. Corder (1967) identifies incorrect forms affecting the learner’s knowledge as errors, and incorrect forms
occasionally or unsystematically affecting the performance as mistakes. The idea of making a
distinction between error and mistake is far from unanimous among researchers. There are plenty of
eamples in the literature where the distinction between both terms is maintained, and just as many
where both error and mistake are used interchangeably. Ellis (1997), in differentiating between errors
and mistakes, states that errors indicate gaps in a learner’s knowledge as opposed to mistakes, which
represent occasional lapses in a learner’s performance. In addition, Reason (1990) defines lapses as
more covert incorrect forms involving temporary failures of memory, and slips as failures occurring
during the execution. Aljaafreh and Lantolf (1994), from a sociocultural perspective, state that when
learners’ performance is self-regulated, i.e. when learners are confident to correct themselves without
assistance, incorrect forms may be regarded as slips of the pen. Consequently, if learners are able to
correct themselves with the smallest amount of help, such as a minimum attention directed by the
teacher to a particular lexical or grammatical issue, it indicates that (a) learners are nearly at the point
of self-regulation, and (b) the incorrect forms are almost to be considered as slips of the pen. Learners,
in such circumstances, do not require any further feedback from the teacher (Aljaafreh & Lantolf,
1994).

Corrective feedback, as defined by Lightbown and Spada (1999) is “any indication to the learners that
their use of the target language is incorrect. This includes various responses that the learners receive
[...], corrective feedback can be explicit [...] or implicit [...], and may or may not include
metalinguistic information” (p. 172-173). Meta-linguistic feedback is, according to Heift (2004), the
most elaborate form of feedback, in that the explanation of the incorrect form is provided without
giving the correct answer. Aljaafreh and Lantolf (1994) claim that “feedback is negotiated in the ZPD
in terms of the regulatory scale”, which provides gradual options in terms of feedback moving from
implicit to explicit (p. 471).

In this paper, a mistake in language learners’ written texts is defined as any incorrect form a learner
could notice and correct either without or with minimum assistance, regardless of whether it is due to
a lack in the performance or a slip of the pen occurring during the writing process. In other words, a
mistake is an incorrect form that does not necessitate any comments from the teacher, other than the
most implicit feedback in the regulatory scale. An error, on the other hand, is defined as any incorrect form requiring more explicit feedback from the teacher.

This paper investigates how language learners approximate the target language, depending on task-based writing activities, and whether they produce errors and/or mistakes in one task but not in another. A preliminary focus on written texts produced by one learner of French (girl), is analysed in order to address the following research question:

\[\text{RQ: Does the learner’s performance vary in error types across task-based writing activities with regard to the error/mistake distinction?} \]

After providing an overview of the instruments used to encode the incorrect forms and tag the different part-of-speech categories in the learner’s written texts, the difference between errors from mistakes is presented. Aspects of the learner’s language variations are investigated through data collected during one academic semester. Ill-formed as well as well-formed grammatical aspects in the texts are considered to analyse language variations in task-based activities. A summary of results are provided and discussed in detail.

METHODOLOGY

Participant and data collection

The data considered in this paper is taken from a larger corpus. This study, however, is limited to the data from only one participant. The student selected, a mature female student, was enrolled in a French language course at an Irish university over a period of one academic semester in 2008. The curriculum of this course covered a project-based approach, which was to describe one typical week at the university from the student’s point of view. She was quite eager to learn French by any means other than just the lectures provided by the university. The fact that she submitted 32 texts for correction with a total amount of 2,144 words became the reason for which she was chosen for this preliminary analysis. The text genres submitted were a reflective account of her learning experience, a discussion forum, email correspondence, few wiki texts, one essay, and finally, her written
transcription of a speech she recorded. Some of her task-based activities were formally corrected and graded by her teacher as continuous assessment, the others being on a voluntary basis. Each of her written texts, error-encoded and part-of-speech tagged, were extracted from the corpus to investigate intra-learner variability before and after distinguishing between errors and mistakes.

Data encoding

The learner’s performance is represented by calculating the ratio of incorrect to correct forms generated. This ratio is determined by counting incorrect forms and part-of-speech tags. For example, if the student wrote 11 adjectives in total in a text and one of these is marked as an incorrect agreement with the noun it qualifies, whereas all the others are marked as correct, the ratio of incorrect to presumable correct forms of noun adjective agreements is 1:10. This gives 90.9% of success in writing this type of concord. To calculate the ratio of incorrect to correct forms, the learner’s texts are error-encoded and part-of-speech tagged.

Incorrect form encoding

Written texts have been error-encoded through a web-based application especially built for the purpose of this study. The functioning is based on the software Markin\(^1\) whose design and utilisation are intended to assist language teachers in the marking of students’ texts submitted electronically. While the incorrect form annotation is processed by hand, the processing of the information is fully automated. Each incorrect form is encoded with its error type and feedback is provided to the learner to help correct herself. The scale used in this study is given below:

1. The highlighted incorrect word, or group of words indicates that something is wrong, no further information is provided.

2. The error type is provided for each highlighted incorrect word or group of words, narrowing down the nature of the incorrect form.

3. Detailed explanations about the nature of the incorrect form is given to help the learner
find the correct answer, but without providing it.

4. The correct form is provided.

Each incorrect form is surrounded by stars (corresponding to level 1 in the regulatory scale), and then followed by square brackets which enclose the error type *incorrect form*[errorType] (level 2 in the regulatory scale). An index is provided in order to make the sequence unique in the input text and the meta-linguistic feedback (level 3), along with the correction (level 4), are displayed inside curly brackets and directly attached to the incorrect form. Information inside the curly brackets are separated with the @ sign, which is used afterwards as a splitting character when automatically processing the string. The whole sequence is as follows: *incorrect form*[errorType]{index@meta-linguistic feedback@correct form}.

Part-of-speech encoding

A part-of-speech tagger is a software which provides for any input text the most likely part-of-speech (PoS) for each word of the input. The tagging tool used in this study is TreeTagger 2. This software is a language independent part-of-speech tagger for annotating text with part-of-speech and lemma information, available online. The tagging accuracy, according to Schmid (1994), attains a result of 96.34%. However, after running TreeTagger with the data collected for the purpose of this study, that is, texts written in French exhibiting misspelling, foreign and invented words, the accuracy result obtained is far below 96%.

The tagging accuracy, when processing language learners’ ill-formed written productions, was increased by following three sequential steps: (a) identifying lemmas that are unknown to the tagger; (b) checking the part-of-speech tags automatically obtained against an extended set of common-sense rules based on recurrent tagging errors; and (c) cross-referencing the part-of-speech tags with the error-encoded tags. The output produced by TreeTagger before and after improvements was compared with the output produced by a human (this researcher). The proportion of agreement was

1 Markin is available from www.cict.co.uk/software/markin/index.htm
2 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
estimated through the mean of the Cohen’s (1960) kappa coefficient and Krippendorff’ (1970) alpha coefficient. With an average learner’s error rate of 17.11%, both methods estimate a proportion of agreement of around 89.6% ($\alpha = .8962; \kappa = .8960$) before improvements, and of 97.6% ($\alpha = .9760; \kappa = .9760$) after improvements.

Discriminating between errors and mistakes

Based on Vygotsky’s (1978) double stimulation method, the learners are placed in a situation that is assumed to be above their natural capabilities. As Van der Veer and Valsiner (1991) point out “the subject is put in a structured situation where a problem exists [...] and the subject is provided with active guidance towards the construction of a new means to the end of a solution to the problem” (cited in Engeström, 2007, p. 364). In this study, the active guidance is represented by the different levels of assistance provided to the learner, the ultimate goal being the correction of her own texts.

The participant was asked to review her written documents three times before receiving an appropriate alternative to all incorrect forms she produced. The idea was to offer gradual levels of feedback, and to determine the amount of help she required to achieve the ultimate goal, that is, an appropriate performance. For the very first time, the self-editing exercise was performed under supervision, mostly in the event of technical issues, and also for final recommendations before getting started. The main pieces of advice were to not use external help such as assistance of a third party or dictionaries, the aim being to estimate what the learner knew at a particular point in time without and with controlled feedback. Another directive was to limit the time spent on each incorrect form. Either the learner knows for certain –or thinks she knows– how to correct herself and provides an alternative, or the learner has no clue of what might be wrong or how to correct the highlighted form, and leaves it as such.

The next stage refers to the validation of the learner’s alternatives of which there are two criteria. The first criterion specifies whether the error type has been resolved and the second one whether the alternative is well-formed. For example, the learner, by providing a replacement, which solves the error type highlighted, might generate another error type. Or, the learner might suggest a correct
alternative, which does not solve the error type in any case. While the first criterion validates or invalidates the replacement word as a correct option with regard to the error type, the second criterion labels the learner's proposition as correct for future use.

An incorrect form is assumed to be a mistake if the learner is able to correct herself with minimum assistance, that is when the incorrect form is merely highlighted. Mistakes are likely to be occasional and self-corrected. The learner knows how to correct what she has done wrong (Gass & Selinker, 2008). Otherwise, if the learner requires more assistance to notice the error type and produce a correct alternative, the incorrect form is considered as an error. This type of incorrect form cannot be self-corrected without assistance thus reflecting the current knowledge of the learner (Gass & Selinker, 2008).

Data analysis

The aim of this analysis is to show the difference between the learner’s initial performance and the learner’s mediated performance, across task-based activities and error types at different points in time. While the initial performance looks at all incorrect forms without differentiating errors from mistakes, the mediated performance considers only the errors.

The first part explains how both initial and mediated performances are estimated, and how the data was normalised. Then the initial and mediated performance are statistically analysed to determine whether the means of error types between task-based activities are significantly different. The last part of this section looks at learner variability by considering error types over a period of one academic semester, divided into three spans, i.e. October, November and December. Focussing on (a) five agreement error types (noun/adjective, determinant/noun, subject/verb, pronoun/antecedent and past participle) and (b) five selection error types (article type, preposition, tense, mood and connection word), this preliminary study investigates whether errors and/or mistakes are produced in one task but not in another.
Initial performance versus mediated performance

The information drawn from the direct observation in the learner’s written productions are used to represent the learner’s initial performance. The word initial means that the performance is seen as an unprocessed output, that is the first version of the learner’s productions. To represent this learner’s initial performance, the ratio of incorrect to correct forms (IncF:CorF) is calculated by counting the number of observed incorrect forms and the number of presumable correct forms. This is estimated by counting the part-of-speech tags related to these incorrect forms. The following formula illustrates the percentage of success in producing correct forms: $\left(\frac{\text{CorF}}{\text{CorF} + \text{IncF}} \times 100\right)$.

Table 1 shows the detail of incorrect and correct forms as well as the global percentage of success in producing correct forms for each task-based activity.

Table 1
Learner’s initial performance grouped by task type

<table>
<thead>
<tr>
<th>Task type</th>
<th>IncF</th>
<th>CorF</th>
<th>IncF:CorF</th>
<th>% of success</th>
</tr>
</thead>
<tbody>
<tr>
<td>forum</td>
<td>79</td>
<td>510</td>
<td>1:6.46</td>
<td>86.59%</td>
</tr>
<tr>
<td>reflection</td>
<td>163</td>
<td>1468</td>
<td>1:9.01</td>
<td>90.01%</td>
</tr>
<tr>
<td>e-mail</td>
<td>70</td>
<td>307</td>
<td>1:4.39</td>
<td>81.43%</td>
</tr>
<tr>
<td>essay</td>
<td>33</td>
<td>212</td>
<td>1:6.42</td>
<td>86.53%</td>
</tr>
<tr>
<td>instruction</td>
<td>27</td>
<td>163</td>
<td>1:6.04</td>
<td>85.79%</td>
</tr>
<tr>
<td>wiki</td>
<td>146</td>
<td>1340</td>
<td>1:9.18</td>
<td>90.17%</td>
</tr>
<tr>
<td>spoken</td>
<td>78</td>
<td>608</td>
<td>1:7.79</td>
<td>88.63%</td>
</tr>
<tr>
<td>Total</td>
<td>596</td>
<td>4608</td>
<td>1:7.73</td>
<td>88.55%</td>
</tr>
</tbody>
</table>

The student wrote a total of 596 incorrect forms and 4,608 part-of-speech tags that do not carry any learner’s error tag. The ratio, on average, of incorrect to correct forms is equal to 1 incorrect form every 7.73 correct forms. Figure 1 is a graphical representation of the learner’s initial performance.
Figure 1
Graphical representation of the learner’s initial performance

The whole spider’s web typifies the learner’s performance without any mistakes or errors. The plain surface illustrates what the learner did achieve. Rogers (1995), originally investigating employee performance and competence, describes the spider chart as a “powerful graphical tool for evaluating [...] performance” (p. 16). The spider chart, also called a radar chart, graphically shows the size of the gaps among the seven performance activities, i.e. forum, reflection, e-mail, essay, instruction, wiki and spoken. For example, the initial performance achieved for the e-mail category is 81.43 %, and 90.17% for the wiki category.

To represent the different levels of the learner’s performances, the learner’s initial performance is updated by increasing the percentage of success in achieving a task with the amount of incorrect forms that were successfully corrected by the learner with the different levels of help. Figure 2 shows the percentage of correct alternatives provided by the learner at levels 1, 2 and 3. Level 1 corresponds to the level of minimum help in the regulatory scale, where all incorrect forms are only highlighted. Level 2 provides the learner with the error type and level 3 gives meta-linguistic feedback on each incorrect form, without giving the correct answer.
While the smallest concentric circle represents what the learner is able to correct by herself with minimum help, the middle concentric circle is what the learner could correct when the error type was provided, and the largest concentric circle indicates the proportion of incorrect forms that were corrected with detailed explanations. According to Aljaafreh and Lantolf (1994) “[e]rrors for which implicit strategic feedback proved to be effective are considered to be high in ZPD […], since the learner is close to independent performance, while those that require explicit feedback are said to be low in the ZPD […], because the learner is further away from producing the correct form without help” (p. 471). Incorrect forms successfully corrected with implicit feedback are assumed to be mistakes since the learner is nearly at the point of producing the correct form without any assistance. The amount of mistakes deduced from the amount of incorrect forms constitutes the starting point for investigating learner variability in terms of errors that need attention.

Both initial and mediated performances are illustrated in Figure 3. The largest concentric level represents the percentage of success taking into account only errors, whereas the smallest concentric curve displays the initial performance, therefore including errors and mistakes.
Initial and mediated performances across task-based activities

One-way analysis of variance (ANOVA) is used to determine whether the mean difference between task-based activities is to be considered as significant enough for further analysis. The test requires (a) a dependent variable, which is the percentage of success calculated for the initial and mediated performance, and (b) a factor, which corresponds to the task category. The first analysis examines the impact of all error types taken together as a whole on task-based activities, for both initial and mediated performances. Results of the analysis are presented in Table 2.

Table 2
Significance value for both initial and mediated performances

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>303.311</td>
<td>6</td>
<td>50.552</td>
<td>.258</td>
<td>.955</td>
</tr>
<tr>
<td>Within Groups</td>
<td>23897.831</td>
<td>122</td>
<td>195.884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24201.142</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediated Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>209.937</td>
<td>6</td>
<td>34.999</td>
<td>.407</td>
<td>.973</td>
</tr>
<tr>
<td>Within Groups</td>
<td>10497.889</td>
<td>122</td>
<td>86.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10707.826</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A small significance value (sig<.05) would indicate group differences. In that case, a sig value, for initial and mediated performances, of .955 and of .873, respectively proves that the assumption of all variances being equal between tasks is corroborated. The analysis is further broken down by
investigating all pairwise comparisons of the group means. For example the group forum is compared to the group reflection, and to the group email, and so on, and then the group reflection is compared to the group forum, and to the group email, and so forth. The post hoc analysis showed that the differences between all pairwise comparisons were not significant enough to be taken into account.

The next analysis examines the impact of selection and agreement error types as main categories on task-based activities. The selection category includes error types such as inappropriate connection word choice, incorrect article type or preposition. The agreement category groups error types such as incorrect agreements between a noun and its determiner or a subject and its verb. While looking at selection or agreement error categories, the one-way analysis of variance shows no significant differences between tasks, taking the time parameter into account or not.

The following section compares the learner’s initial performance with the learner’s mediated performance, taking all tasks in one group, and investigates the errors/mistakes distinction in selection, and agreement error types.

Comparing the variability of the learner’s initial and mediated performance across error types

The variation of both initial and mediated performances is estimated through a relatively short period of time, *Time 1* corresponding to the data collected during October, *Time 2* November and *Time 3* December. The error types considered are first selection types and then agreement types. The graphical representation displayed in Figure 4 illustrates the observation of the learner’s initial and mediated performances at several points in time. The error types considered are article type, preposition, tense, mood and connection word.
The percentage of success in the article type category is deliberately not represented on both graphics at *Time 1*, the reason being insufficient data detected with statistical tests. Disregarding the article type category at *Time 1*, the general impression of the initial performance is that the results seem to be weakened in November (Time 2), with the exception of the *preposition* curve. The mediated performance, however, indicates a progressive improvement from *Time 1* to *Time 3* in terms of writing correct occurrences of prepositions, connectives and tense choices, excepting the mood curve. It falls down in *Time 2* and rises again in *Time 3*. The reason for this is due to the learners’ attempt of trying other grammatical constructions. Indeed, she wrote more instances of conjugated verbs which should be followed by infinitive form, without mastering them in all circumstances. The learner tends to use the indicative mood instead of the infinitive in some occasions: e.g. “*je voudrais vous rencontrer I would like to meet you*”, whereas a correct alternative would be “*je voudrais vous rencontrer*”. In this example, she used the indicative present for the second verb rather than the infinitive. This incorrect form, as one could argue, is not merely a misspelling or a single letter missing due to fast typing. The fact that she was thinking indicative present rather than infinitive has been ascertained during extra one-to-one classes.

The second data analysis, displayed in Figure 5, considers agreement error types, that is noun/adjective (agrNA), determinant/noun (agrDN), subject/verb (agrSV), pronoun/antecedent (agrPA) and past participle agreements (agrPP).
Statistical tests revealed that the results obtained for the noun adjective error type at Time 1 in both graphics may not be representative due to few occurrences of these error types. For this reason, they are not displayed in the graphical representation and are not taken into consideration. While the results obtained from the initial performance show a noticeable fall in performance in Time 2, like in selection error type, the tendency for mediated performance with the exception of past participle agreement, is that the learner relatively mastered all forms of agreement well. She knows how to perform grammar agreements between words, in gender and person. She was able to correct herself almost every time with minimum assistance, which implies that she does not require any further expertise from the teacher when incorrect forms are related to agreement error types. The past participle agreement figure, however, plummeting from November to December, indicates that she was able, up to October, to make proper past participle agreement. This increasing and then decreasing of the learner’s mediated performance provides an example of the language learning process not being linear. The learner seems to master a grammatical feature by properly applying the rules and then, while the level of difficulty has not evolved, she seems to be confused and unable to correct herself with minimum assistance. Looking closer at the data, it is clear that the learner provided correct alternatives when the past participle was employed with the auxiliary être (to be) at level 2 or 3, that is with the error type or meta-linguistic feedback provided. However, she was unable to write correct alternatives in the case of past participle employed with the auxiliary avoir (to have). This narrows down the circumstances of the linguistic weakness and the amount of assistance required.
DISCUSSION

Tarone and Parrish (1988) note that language learners’ accuracy in their written texts does vary depending on the task to be performed. Language learners do produce incorrect forms, i.e. errors and mistakes taken together in one task, whereas they do not in another. For instance, Tarone (1985) demonstrates that the use of six target language forms, such as feminine gender on pronouns or the noun plural -s, by language learners at a single point in time shows systematic variability in accordance with the task type. Systematic variability refers to variation that can be explained and predicted, as opposed to non-systematic variation or free variation which cannot be predicted and seems to happen without method. The data analysed and presented shows that language learning may have linear as well as non-linear patterns over time. Heift (2008), in considering learner variability from a computer assisted language learning point of view, explicates that her analyses “emphasise the dynamic and non-linear process of language learning” (p. 318). Looking at the initial performance, i.e. errors and mistakes taken together, the analysis reveals periods of progress and regress, or regress and progress. However, the mediated performance smooths the learner variability curve, attesting of a more linear progression for some error types.

One may argue that correct alternatives obtained at level 1 in the regulatory scale, i.e. with minimum help, could be lucky guesses. For example, if the learner produced correct alternatives at level one but not at level 2 and 3, the interpretation may be twofold. Firstly, the student knows the answer, which leaves two possible interpretations: (a) she does not understand the feedback provided, either the error type or the meta-linguistic feedback, or (b) the feedback is harmful to some extent, destabilising her knowledge. Secondly, the learner does not know the answer and the alternative provided is a lucky guess. Taking guesses as valid alternatives will certainly lead to a false conclusion in terms of mediated performance, yet, lucky guesses were not taken into consideration in this study. The main reason for not considering them as decisive in this analysis was supported by the fact that if the learner knew what could be wrong at level 1, when the incorrect form was highlighted, she almost always gave correct alternatives at level 2 and 3. For this reason, correct alternatives were not considered as lucky guesses.
The data analysis shows that, for this particular student, the differences between task-based activities were not statistically significant to be taken into consideration. One possible explanation may be due to the high motivation of this learner. She is eager to learn French and tries her best in every situation, paying careful attention in email as well as in graded written tests.

From a pedagogical point of view, language variability across past and present assignments should be identified in order to ascertain the learner’s ability in using the language. The mediated performance can help establish what the learner is able to do now with minimum assistance, and predict what she will be able to do on her own at some point in time. Lantolf and Thorne (2007) state that “[d]evelopment within the ZPD is not just about performance per se; it is also about where the locus of the control for that performance resides in someone else or in learners themselves” (p. 212). By investigating what the learner can successfully perform with expert guidance, by identifying the learner’s current level of development, feedback can be adapted more precisely to each individual. Failure to establish the learner’s actual level of development may result in ineffective feedback. In other words, an appropriate mediation will enable learners to exceed their performance (Poehner, 2007).

CONCLUSION

This preliminary study investigated intra-learner variability in terms of selection and agreement error types across several task-based activities over a period of one academic semester. This case study approach involved the participation of one mature student of French language in her first year at university level. After demonstrating how the initial and mediated performances were normalised, that is, by counting the correct forms as well as the incorrect forms the learner had written in her texts depending on the level of assistance required to correct herself, this paper investigated whether her performance varied across task types with regard to the error/mistake distinction. The analysis showed that the differences between the various activities were not considered as statistically significant when analysing mean variances. Either looking at the effect of all error types taken together as a whole on task-based activities or in groups –selection and agreement categories–, or investigating all pairwise comparisons of the group task, or splitting the data according to the timeline, ANOVA shows no
significant differences between tasks for this participant. One possible explanation may be due to the learner’s level of carefulness when writing in French, paying attention to grammatical and lexical features in all types of documents.

The second analysis investigated learner variability in both initial and mediated performances in terms of agreement and selection errors. While the initial performance corresponds to the learner’s performance without distinguishing between errors and mistakes, therefore looking at all incorrect forms taken together, the mediated performance on the other hand, only considers errors, disregarding incorrect forms that were corrected with minimum help. The data analysis of the initial performance showed periods of regress and progress depending on the error types. More specifically, the initial performance tended to be weakened in November (Time 2) in almost all the error types considered in this study. The mediated performance, however, revealed linear as well as non-linear progressions for some error types. After formally discussing this drop in the initial performance with the participant herself, she says that a member of her family died during the same period. We cannot be sure for certain the reason why the performance decreased at a specific point in time, but a deceased in the family seems to be more than a plausible reason for this.

Looking at what the learner is able to self-edit with minimum help, that is when being nearly at the point of producing the correct form without any assistance, provides more predictable progression curves despite the apparent dynamic nature of the cognitive development. At surface level, the learner confused some words with others, such as prepositions or connectives, but the level of assistance required to correct most of them did not go over level 1, that is, minimum help. While results need to be interpreted with caution, as the analysis reflects the data of only one single participant over a relative short period of time, further investigating what learners can successfully perform with minimum expert guidance could provide a more comprehensive insight into learner variability. Further analyses will be required to corroborate these findings, which infers other participants and a wider range of error types to be investigated over a longer time span.
REFERENCES

AUTHOR'S BIODATA

Sylvie Thouësny received a B.A. in German literature and a B.Sc. in computational linguistics. She is currently a Ph.D. student at Dublin City University, Ireland. Her areas of research focus on language learner modeling and feedback, and include several aspects of computational linguistics such as error analysis, human-computer interaction and ICALL system design and development.
AUTHOR’S ADDRESS

Sylvie Thouësny
School of Applied Language and Intercultural Studies
Dublin City University
Dublin 9, Ireland
Email: sylvie.thouesny2@mail.dcu.ie

ACKNOWLEDGEMENT

I would like to thank Dr. Françoise Blin for her helpful suggestions on an earlier version of this article, the anonymous reviewers for their thoughtful comments, as well as the participant of this study.